
AMI 0.1 protocol specifications

Address Memorizing Interface

Specifications version 4.9
11/11/2002
Copyright (c) 2001,2002 Bertrand Florat
AMI protocol and all AMI specifications are under the GPL license. Read licence file.
Changelog and TODO

Table of Contents

Definitions
AMI uses
The routing table (RT)
Address information
Address Request
AMIPING

AMIPING specifications
Packet Format
AMIping buffer
Transmission
Reception
Reply
Pinging a peer - pu amiping(ip)
Status checking - boolean check_peer(pu)

The Routing Table (RT)
Notations
Format
Adding a new entry in RT - boolean add_peer(pu,ip,al)
Altering a peer properties - boolean alter_peer(pu,ip)
Black-listing

The Result Table
Declare an AR search - boolean add_search(arid,max)
Add a result in reply to an AR - boolean add_result(arid,pu)
Drop an entry in result table - boolean del_result(arid)

Internal additional functions
Log a query ID to detect looping packets - boolean query_log(value)
Check if a query ID is in log - boolean is_log(value)

Internal Address Information
IAI packet format
Transmission at the beginning of session (type 1)
Transmission as reply to an address request (type 2)

Reception
Address request (AR) specifications

AR packet format
AR transmission
AR reception

User criteria
Description files
user.xml format
check_criteria function
Protocol description

AMI Internal Services protocol (AIS)
Definition
Available AIS

Address Request
External Address information
isolated
amiparameter
amiset
infopeer
cleanrt
protocolstatus
protocolmanager
amistop

AIS engine
Packets compatibility matrix

Available mixes
Global DTD

SOAP encapsulating
HTTP encapsulating

HTTP tunneling
Total AMI packet sample

Packets alias
AMIPATH obtaining
Ami engine external functions

Definitions

AMI uses

purposes

AMI is a low-level protocol used for two main purposes:

� Maintain the personal routing table filing peers. Indeed, a peer IP address can change at each connexion.
Then, AMI will query others peers to get new peer IP-addresses. For instance, few days ago, you
communicated with Bob but its IP address has changed. Through AMI, you will ask above all your AMI
network to find his new address - assuming he's connected.

� Locate peers matching specified criteria used by over-protocols. For instance, you are using a AMI over-
protocol managing an IRC. You want to find all people wanting to speak about cinema for example. AMI will
find such people for you. AMI uses AR requests to find people matching criteria. All criteria are stored under
XML format open enough to plug any further protocols.

AMI means 'Address Memorizing Interface' because it is used to maintain informations on a peer community. It makes
easier to communicate over the Net.

over-protocols

AMI has been thought to be used with some over-protocols which will plug on it. These protocols are AMI-compliant
only if they are based on XML and respect some minimal AMI rules. They can be written in any language and not only
Java. Communication between AMI engine and protocols are done by AIS : Ami Internal Services (see below).
External programs should stay in $AMIPATH/ext directory.

packets types

Three types of packets are exchanged: Address Request (AR) , Address Information (IAI and EAI) and AMIPING.

XML format

All information packets under AMI are represented under XML format to assure maximum performances, simplicity,
compatibility of the protocol and facilitate the development of over-protocols in any language. For some performances
and architecture reasons, the XML will need to be well formed but not always validated. AMI uses SAX-type XML
parser to process large amounts of data. For each AMI packet, corresponding DTD is given in these specifications for
information but validation can be done internally for some types of packets.

Port used

AMI protocol is designed to be run on any network port. For example, a user running AMI on port 80 can
communicate with a peer on port 8888. Default default port is 1139 (a=1, m=13, i=9) which is >1024 to deal with
security restrictions on UNIX (AMI can be launched without being 'root').

Security / privacy features

Note AMI doesn't process or encode packets (except local parameters serialized on local disk). Every AMI packet is
sent in clear (actually, packets can be compressed, so not directly readable) because AMI protocol itself doesn't deal
with significant information. Most of packets are AMI-internal and just transfer some IP addresses and the only user-
specific information are criteria in AR used to broadcast people. 'Real' privacy could be useful at an application level
by over-ami protocols.

However, every AMI packet has to be signed to be authenticated at reception. The attribute 'sign' of the tag ami packet
is the MD5 hashcode of the query encoded with RSA private key of transmitter. Exception: the AMIping query doesn't
need to be authenticated at transmission but must be authenticated at reply. In all specifications below, we assume
packets are authenticated before being processed by AMI engine. Otherwise, they are dropped.

AMI requires a passphrase to start. Main information stored on disk (like peer private key) are encoded symmetrically
with this passphrase (using blowfish). AMI provides also some services used by over-protocols to use AMI functions.
Most of these services requires the AMI passphrase to be executed. Protocol plugged over AMI don't have access to
RSA key pair -which is use internally during network packets authentication- but only to the AMI passphrase.

To finish, AMI engine contents security features to protect these protocols. You can find a SSL-like PKI stream (
based on RSA 1024 + blowfish) and a symmetrical encoding stream (based on blowfish).

Checksums, signatures and IDs

� Checksums (cs) used in AMI protocols are based on MD5 hashing algorithm. For low-security level parts (
AIS authentication), we use a trivial hashing algorithm: s[0]*63^(n-1) + s[1]*62^(n-2) + ... + s[n-1] with n,
string length and s[i], byte value of ith character.

� Signatures (sign tags) are the encoded value of a MD5 checksum using the RSA private key.

� IDs are random values chosen in interval [0 ; 1E+09] and wrote in radix 16.

The routing table (RT)

Each AMI node contains a RT filing others peers ip addresses. This way, every peer has an image of a part of AMI
network at a moment. This information is dynamically shared between peers to find new addresses of peers. The RT is
stored under XML format on the peer disk.

Address information

This packet propagates through the network the peers specific information. We find two AI types :

� External Address Information (EAI) : the information comes from an external source. This packet is
required at the first connection. Note that EAI is not a standard AMI query but are an AMI service (see AMI
Internal Services protocol).

� Internal Address information (IAI or AI) : the information is AMI-internal without user intervention.

Address Request

This packet propagates through the network the search for a specific peer IP address. This packet is transmitted on peer
demand or is routed in others cases.

AMIPING

The AMIPING process establishes the status of an AMI peer. It is based on the transmission and reception of a specific
packet which determines the alive status of the connection. To keep the integrity and performances of the protocol, no
information about the transmitter is included in these packets.

AMIPING specifications

The amiping packet is used to check connection with a peer. It can't be mixed with any other packets for integrity and
performances reasons.

Packet Format

Variables:

Name Meaning

pu Replying peer public key (used to authenticate peer)

Transmission format:

<amipacket ami_version='0.1' reply_port= 'port' >
 <amiping />
</amipacket>

Reply format:

<amipacket ami_version='0.1' reply_port= 'port' sign=' signature' >
 <amiping pu=' value'/ >
</amipacket>

DTD (validated):

<!ELEMENT amipacket (amiping | (iai|ar)+) >
<!ATTLIST ami_packet
 ami_version CDATA #REQUIRED
 reply_port CDATA #REQUIRED
 sign CDATA #IMPLIED >
<!ELEMENT amiping EMPTY >
<!ATTLIST amiping pu CDATA #IMPLIED >

AMIping buffer

address

address 1

address 2 ...

We store every amiping query we receive in a pre-buffer in order to drop multiple queries from a same peer (to fight
against Denial of Service and for performances). We store the asking peer IP address in amiping_buffer with unicity
on IP. AMI engine will read this buffer from time to time to process AMIping replies. The amiping_buffer is processed
as a FIFO.
amiping_buffer owns two methods:

� boolean add(ip address) to add the ip address in amiping_buffer.
� boolean remove(ip address) to drop entry corresponding with ip.

Transmission

Variables :
ip : AMIPING packet destination IP address.

begin
 send(new amiping,ip)

end

Reception

Variables :
ip : IP of the peer who transmitted the amiping query.

begin
 if ip not in amiping_buffer then
 amiping_buffer.add(ip)
 end if
end

Reply

AMIping replying is done by specific threads which read the amiping_buffer from times to times. If there is any entry
in amping_buffer, we reply to first element.

begin
 send(new amiping,ip) with
 pu = <own PU>
 ip = amiping_buffer(0)
 amiping_buffer.remove(ip)
end

Pinging a peer - pu amiping(ip)

This function represents fact of sending an amiping query at a given IP address and to get a public key if the IP address
is used by an AMI peer.
Variables :
ip : Destination IP address
begin
 send (new amiping,ip)
 while (transmission time < AMIPING_TIMEOUT and no amiping reply) do
 wait
 end while
 if transmission time > AMIPING_TIMEOUT
 return -1
 end if
 pu=receive(amiping)
 return pu
end
We send an AMIping query and we return pu returned (if there is a reply) and -1 if we get a timeout. Note that in
AMI engine, there is no real waiting : sending on a side and receiving/processing result on the other side are done by
different software modules.

Status checking - boolean check_peer(pu)

This is a generic function used by virtually every AMI packet to check if a known peer is still connected. If a peer is
still trusted by RT, we just return true. If not, we send an AMIPING query to the peer and we return true if reply is
positive. The MAX_CHECK_INTERVAL value is alterable. It represents the maximum time a peer is not checked by
AMIPING request before sending a query. AMIPING_TIMEOUT is also alterable and represents maximum time took
to reach a peer. See amiparameter to get the full list of AMI parameters.
Variables :
pu : public key of the peer we are checking
date : current date

begin
 if date - rt(pu).dlc > MAX_CHECK_INTERVAL or rt(pu).ip_status = 0 do
 if amiping(rt(pu).ip) = pu then
 rt(pu).ip_status <- 1
 rt(pu).dlc <- date
 return true //OK, peer IP address is still valid
 else if amiping(rt(pu).ip) = -1 or amiping(rt(pu).ip) <> pu then
 rt(pu).ip_status <- 0
 return false //peer is gone away or IP address is now used by another peer
 end if
 else
 return true //we return true without check
 end if
end
We want to check if the peer associated with the public key pu is still connected. If this user has already been checked
recently, we trust the routing table without check. If it is a long time since last check, we send an AMIPING packet to
IP address corresponding with pu in the RT. Then, we have three possibilities: first, the peer replies and return a
public key being equals to pu, the peer passed the checking ; second, the peer replies but returns another pu: it means
that old user is disconnected and another peer took this ip address, then the checked peer ip address is no longer
valid, entry status in RT is set to '0' ; third, we have no reply in required amount of time, the user must have left and
status in RT is also set to '0' but we keep the old ip address because he may reconnect later with the same address.

The Routing Table (RT)

Each peer updates its routing table at the reception of an Address Information packet. The properties describing a peer
are : pu, al, ip, pf, dlc and cm. Primary key of this 'table' is pu : a peer is always identified by its public key.

Notations

� The notation rt(pu) represents the peer associated with pu public key.
� The notation rt(*) represents all peers in the RT.
� The notation rt(pu) = null means that there is no entry in RT matching pu public key and rt(pu) <> null means

there is.
� The notation rt(pu).param represents param value associated with the peer owning pu public key (rt(pu).dlc

for example).
� The notation ip_ip, ip_port or ip_status represents a part of the string ip. (example: ip_status=0).

Format

Name * pu al ip pf dlc cm

Goal Public key Peer aliasIP address Perf : capability
of right reply

Date last check: Date
when we did the last ip
check

Optional comments ...

Type String String
(16)

String Integer Integer (in seconds) String (256)

Notes:

� The IP Address will have the following format: '<IP>:<port>:<status>' . Example: '143.23.62.43:1139:0'

� The public key uniquely describes a peer. However, two peers or more can have the same alias or IP address.

Valid IP status :

Status Meaning

0
User is no more connected with ip ip address or ip address is no more corresponding with specified user
but is now used by another one.

1 User is currently connected with IP ip address.

The RT is stored under XML format on peer disk. AMI engine is able to import an external RT.

RT Format:

<?xml version='1.0' encoding='UTF-8' standalone='yes' ?>
<rt ami_version='0.1' xmlns='http://www.ami.org/rt'>
 <peer pu=' value'
 al=' value'
 ip=' value'
 pf=' value'
 dlc=' value'
 cm=' value'
 </peer>
</rt>

DTD (validated):

<!ELEMENT rt (peer)* >
<!ATTLIST rt xmlns CDATA #REQUIRED>
<!ATTLIST rt ami_version CDATA #REQUIRED>
<!ELEMENT peer EMPTY>
<!ATTLIST peer
 pu CDATA #REQUIRED
 al CDATA #REQUIRED
 ip CDATA #REQUIRED
 pf CDATA #REQUIRED
 dlc CDATA #REQUIRED
 cm CDATA #IMPLIED >

Adding a new entry in RT - boolean add_peer(pu,ip,al)

Function add_peer allows to add new entries in the RT. Every entry is checked before being added.

Variables :
pu : Public key of the peer we are adding
ip : IP address of the peer we are adding
al : Alias of the peer we are adding
date : current date
begin
 if amiping(ip)=pu then
 create new entry in RT with:
 _pu = pu
 _ip = ip

 _al = al
 _pf = 0
 _dlc = date
 _cm = '')
 return true
 end if
 return false
end
To add a new entry in the routing table, we first check its validity by sending an AMIPING query to the peer at ip IP
address. If this peer replies an AMIPING packet with a public key equals to waited pu, we add the entry and we return
true. Else (time out or wrong reply), we return false.

Altering a peer properties - boolean alter_peer(pu,ip)

Function alter_peer permits to alter - after checking - properties of a peer in the RT.
Variables :
pu : Public key of the peer we are altering
ip : Proposed new IP address for the peer
date : current date
begin
 if amiping(ip)=pu then
 rt(pu).ip <- ip
 rt(pu).dlc <- date
 return true
 end if
 return false
end
An IAI gave us some information about a peer different from what is in our RT. We alter IP address of the peer after
sending of an amiping query.

Black-listing

In order to avoid receiving cracked packets or to ignore someone, AMIPING can black-list a peer. In this case, its
comment in RT will be (reserved) : BLACK-LISTED. When a peer is black-listed, every packet coming from it is
simply dropped and we no more send any packet to it. The peer is identified by its public key. The peer can be black-
listed in two cases:

� At user request using the EAI service (see services below). Just set comment to reserved word BLACK-
LISTED. Set anything else to stop black-listing of the peer.

� Automatically, when the peer reach a too bad negative performance. By default, this value is -100 but is
alterable.

The Result Table

Result table contains information about current searches and store results. It is something internal and temporary, so it
don't use an XML format but is simply a java array.

Format:

arid max retrieved results

value 1 [-1] [3] pu2,pu2,pu3...

value 2 [10] [0] -

value 3 [5] [0] -

Variables:

Name Meaning

arid AR id

max Maximum number of results for this AR. When reached, the entry in result_table is
dropped. -1 means infinite.

retrieved Number of correct replies we retrieved.

results Results themselves : public key values. Additional information (ip) is found in RT for a
public key value.

Notations:
� result_table(arid) represents the entry in result_table associated with arid.
� We can access to max parameter for example with notation: result_table(an arid).max
� Notation result_table(an arid) = null means there is no entry in result table matching the arid and

result_table(an arid) <> null there is.
We declare below a list of functions relative to result table.

Declare an AR search - boolean add_search(arid,max)

Function add_search is called to create an entry in the result_table.

Variables :
in: arid : ID of the new AR
in: max: maximum number of replies : integer

begin
 if result_table(arid) = null then
 add a row with:
 _arid = arid
 _max = max
 _retrieved = 0
 _results = void
 return true
 end if
 return false
end

When we send an AR, we create a new 'AR ID' entry with a void 'Results' set.

Add a result in reply to an AR - boolean add_result(arid,pu)

Function add_result is called to add an item in 'Results' row of the result_table.

Variables :
arid : ID for the new AR
pu : matching pu

begin
 if result_table(arid) <> null then
 if pu not in result_table(arid).results and result_table(arid).retrieved <
result_table(arid).max then
 add pu in result_table(arid).results
 result_table(arid).retrieved <- result_table(arid).retrieved + 1
 return true
 else
 return false
 end if
 else
 return false
 end if
end

Add a new item matching AR identified by arid if an arid entry exists and if pu is not already stored inside.

Drop an entry in result table - boolean del_result(arid)

Function del_result is called to remove an entry in result table. It may be called because we reached max numbers of
replies we were expecting or because we decided to stop search.

Variables :
arid : ID of AR entry we want to drop

begin
 if result_table(arid) <> null then
 remove entry
 return true
 else
 return false
 end if
end

We drop the entry in result table if it exists and return true. Otherwise, we return false.

Internal additional functions

This functions allows to:
� Log a query checksum or ID to detect looping packets : boolean query_log(value)
� Check if a query checksum or ID is in log : boolean is_log(value)

Log a query ID to detect looping packets - boolean query_log(value)

Function query_log is used to log IAI or AR in a spool named query_history in order to avoid looping packets: if we
receive a packet we already processed, we just drop it.

Variables :
value : IAI checksum or AR ID

begin
 if query_history(value) = null then
 add value in query_history

 return true
 end if
 return false
end

If the history doesn't contain an entry with value, we add one and we return true. Otherwise, we return false.

Check if a query ID is in log - boolean is_log(value)

The function is_log is used to check if a query ID or CS is already in log or not.

Variables :
value : IAI checksum IAI or AR ID

begin
 if query_history(value) = null then
 return false
 else
 return true
 end if
end

If the history doesn't contain an entry with value, we return false, otherwise, we return true.

Internal Address Information

This packet is composed of following information: putr,altr,criteria, ip, arid, iaics. This information is sent in two
cases:

� type 1: At each new session: an internal address information is sent to each amipingable peer in order to
declare self new IP address. In this case, criteria is own public key and associated protocol is ami.

� type 2: To reply to an address request: Main information of this packet is IP address of the peer matching
AR.

IAI packet format

Variables:

Name Meaning

putr Transmitter public key. The transmitter can be peer itself or another peer. If type 1,
putr=pu

altr Transmitter proposed alias, is used at user creation.

criteria This criteria is protocol-independent and describes criteria a peer has to match to be
retrieved. Most of the time, protocol used is 'ami' and the criteria is the public key of
the peer whose we return the ip address (address resolution mode).

al Alias for the peer described by the IAI

ip IP address for the peer described by the IAI. Format: IP:Port

arid AR ID. If this IAI is used to reply to an AR, arid=ID of the corresponding AR.
Otherwise, arid=0

iaics IAI checksum, used to drop lost or looping packets. One iaics identifies only
information {arid,criteria,ip,al} but not information {putr,altr}. We can find the same
iaics for two IAI with different transmitters but with the same {arid,criteria,ip,al}.

General packet format:

<amipacket ami_version='0.1' reply_port= 'port' sign=' signature' >
 <iai putr=' value'
 altr=' value'
 al= 'value'
 ip= 'value'
 arid= 'value'
 iaics= 'value' >
 <criteria protocol=' protocol name '>
 <param name=' parameter name ' value=' parameter value '/>
 </criteria>
 </iai>
</amipacket>

If the IAI is type 1:

<amipacket ami_version='0.1' reply_port= 'port' sign=' signature' >
 <iai putr=' own pu'
 altr=' own alias'
 al=' own alias'
 ip=' own ip'
 arid='0'
 iaics=' new checksum' >
 <criteria protocol='ami'>
 <param name='pu' value=' own pu value '/>
 </criteria>
 </iai>
</amipacket>

arid value is zero and packet contains only one criteria with protocol 'ami' and parameter 'pu'. putr and altr are own
pu/al in this case. iaics is a new checksum for this query.

If the IAI is type 2 to reply to an AR in Address Resolution mode:

<amipacket ami_version='0.1' reply_port= 'port' sign=' signature' >
 <iai putr=' own pu'
 altr=' own alias'
 al=' found peer alias'
 ip=' found peer ip'
 arid=' associated AR arid '
 iaics=' new checksum' >
 <criteria protocol='ami'>
 <param name='pu' value=' pu value '/>
 </criteria>
 </iai>
</amipacket>

arid value is corresponding AR arid value and packet contains only one criteria : protocol 'ami', parameter 'pu'. putr
and altr corresponds to values found in RT to reply to the AR. iaics is a new checksum for this query.

If the IAI is type 2 to reply to an AR not in Address Resolution mode:

<amipacket ami_version='0.1' reply_port= 'port' sign=' signature' >
 <iai putr=' own pu'
 altr=' own alias'
 al=' own alias'
 ip=' own ip '
 arid=' associated AR arid'
 iaics=' new checksum' >
 <criteria protocol='amirc'>
 <param name='interest' value='cinema' />
 </criteria>
 </iai>
</amipacket>

� arid value is corresponding AR arid value and packet don't contain any 'ami' protocol criteria but any others
types. More information about criteria is available in chapter User criteria putr and altr are own values
because we answer ourselves that we match the AR. iaics is a new checksum for this query.

� Note that if we describe ourself in type 2 IAI, we don't give any IP because it will be gotten by socket
properties.

DTD (validated):

<!ELEMENT amipacket (amiping | (iai|ar)+) >
<!ATTLIST ami_packet
 ami_version CDATA #REQUIRED
 reply_port CDATA #REQUIRED
 sign CDATA #REQUIRED>
<!ELEMENT iai (criteria+) >
<!ATTLIST iai
 putr CDATA #REQUIRED
 altr CDATA #REQUIRED
 al CDATA #REQUIRED
 ip CDATA #REQUIRED
 arid CDATA #REQUIRED
 iaics CDATA #REQUIRED >
<!ELEMENT criteria (param+) >
<!ATTLIST criteria protocol CDATA #REQUIRED >
<!ELEMENT param EMPTY>
<!ATTLIST param
 name CDATA #REQUIRED
 value CDATA #REQUIRED >

Criteria rules:

� MAY contain zero or one Address Resolution criteria with protocol ami and parameter pu. If an IAI packet
contains one ami criteria, it can't contain any other criteria.

� MUST contain at least one criteria.

Note that you don't find mandatory notion in IAI criteria because IAI packets are basically replies to AR and contain
only matching criteria from replying peer, so all criteria in IAI are true for him.

Summary:

The following table sums up the three different IAI types we can receive or transmit.

IAI

IAI replying to an AR

arid <> 0

Address resolution mode criteria

Others criteria protocols

IAI not replying to an AR

arid = 0

Address resolution mode criteria

Analyze an incoming IAI : boolean process_reply(iai)

This is used by the IAI reception algorithm to check if it contains some fresh information. This information can either
be:

� IAI with no associated an AR (type 1 IAI) but containing a new set of {pu,al,ip} we don't have in our RT.

� IAI with no associated AR (type 1 IAI) but containing a set of {pu,al;ip} different from what we have in our
RT.

� IAI replying to an AR we sent. In this case, this IAI can be reply to an Address Resolution mode AR (with
one unique criteria with 'ami' protocol) or reply to an standard mode AR (with one or several criteria on
others protocols than 'ami').

Function returns:

Code Meaning

-1 Information in IAI is wrong

0 Information in IAI is right but not new

1 Information in IAI is right and new

Variables :
iai : incoming IAI
pu: intermediate public key

begin
 if iai.criteria_protocol = 'ami' then //if it is an address resolution mode IAI
 pu <- iai.criteria_pu
 ip <- iai.ip
 else
 pu <- iai.putr
 ip <- IP got by socket properties
 end if
 if rt(pu) = null then //if we don't know the IAI transmitter
 if add_peer(pu,ip,iai.al) = true then //if adding in RT is OK
 if result_table(iai.arid) <> null then
 add_result(iai.arid,pu)
 end if

 return 1 //right and new information
 else
 return -1
 end if
 else if rt(pu) <> null and rt(pu).ip = ip then //if we know the peer described in IAI
criteria and ip in IAI is the same than in RT
 if check_peer(pu) = true then
 if result_table(iai.arid) <> null then
 add_result(iai.arid,pu)
 return 1
 end if
 return 0 //right but old information
 end if
 else
 return -1
 end if
 else if rt(pu) <> null and rt(pu).ip <> ip then //we know the peer with ip in IAI other
than in RT
 if alter_peer(pu,ip) = true then
 if result_table(iai.arid) <> null then
 add_result(iai.arid,pu)
 end if
 return 1
 else
 return -1
 end if
 e nd if
end

We just received an IAI and we have to analyze it to check if this one contains some right and useful information, some
right but useless information or some wrong information. Remember we can receive IAI coming from AMI internal
engine (address resolution mode, see Internal Address Information) and we can receive IAI as reply to application
level queries transmitted via an AR. These type of IAI (type 2) has always arid value different from zero.

if IAI is in address resolution mode (one unique criteria with protocol='ami' and param='pu'), public key associated
with ip tag in IAI packet is criteria_pu (putr can be the address of another peer which send you this information).
However, if IAI is not in address resolution mode (any other criteria protocol than 'ami'), public key associated with
ip tag is putr because each peer matching criteria replies with its own address.

 Firstly, we check if IAI describes a peer we don't know at all (no entry in RT). If so, we try to add this new
information in RT and if operation succeeds, we add a result in result_table if this IAI is the reply for a known AR.

 If IAI describes a peer we know with the same IP address : we check validly of this information and if it is a reply
for a known AR, we log it in result_table. Then, we return 0 because it is a right but old information.

 Third case : if peer is known in RT but with a different IP address, we check if IAI transmitter is right. If transmitter
is right, we alter our RT. If IAI is an AR reply for an AR we transmitted, we fill also AR result table. Then, we return
true and new information status. If test returns false, we return wrong information value.

Transmission at the beginning of session (type 1)

Variables:
iai : intermediate iai

begin
 iai <- new IAI with
 putr = <own pu>
 altr = <own alias>

 criteria = <own pu> (1)
 al = <own alias>
 ip = <own ip>
 arid = 0
 iaics = <new cs>
 for peer in {rt(*)} do
 if check_peer(peer.pu) = true then
 send(iai at rt(peer.pu).ip)
 end if
 end for
 query_log(iaics)
end

(1): in this case, total criteria is:

<criteria protocol='ami'>
 <param name='pu' value=' public key' / >
</criteria>

When we start AMI process, we send the IAI to every connected peer we find in our RT, in order to 'declare' ourselves
to others.

Transmission as reply to an address request (type 2)

Here, we send an IAI for AR reply. Note that information of searched peer is not checked here because this method is
called only if this information is already right.

Variables:
peer: the peer to which we want to reply (AR transmitter or last AR forwarder).
ar : Address Request to which we want to reply.

begin
 if check_peer(peer.pu) = true then
 send(new iai at peer.ip) with
 putr = <own PU>
 altr = <own alias>
 criteria = <matching criteria among corresponding AR criteria> (1)
 al = <found peer alias>
 ip = <found peer IP>
 arid = ar.arid
 iaics = <new CS>
 query_log(iaics)
 end if
end

(1) Criteria must contain at least all AR mandatory criteria and a part of AR optional criteria.(Note that an AR must
contain at least one mandatory criteria, see Address request (AR) specifications.

We received an address request for a user we know. After verification of destination peer, we send a new IAI with
putr=our public key as transmitter public key, altr=our own alias information, criteria=found peer matching criteria,
al=found peer alias, ip=found peer IP address, arid=ar ID and iaics= a new checksum. This checksum will be logged
to trace looping packet.

Reception

Variables:
iai : IAI we received

pu : intermediate public key
newiai : intermediate IAI

begin
 if iai.criteria_protocol = 'ami' then //if it is an address resolution mode IAI
 pu <- iai.criteria_pu
 else
 pu <- iai.putr
 end if
 if rt(iai.putr) = null then //transmitter analyze
 add_peer(iai.putr,iai.iptr,iai.altr) (1)
 else if rt(iai.putr) <> null and rt(putr).ip <> iai.iptr then
 alter _peer(iai.putr,iai.iptr)
 end if
 if is_log(iai.iaics) = false then //starting IAI analyze
 query_log(iai)
 if process_reply(iai) = 1 then
 rt(iai.putr).pf <- rt(iai.putr).pf +2
 if iai criteria protocol = 'ami' then
 newiai <- new iai with
 putr = <own PU>
 altr = <own alias>
 criteria = <criteria protocol='ami'><param name='pu' value='pu '
/ ></criteria>
 al = iai.al
 ip = iai.ip
 arid = 0
 iaics = new cs
 for peer in {rt(*) - rt(iai.putr) - rt(pu)} do
 send(newiai,peer) (2)
 end for
 query_log(newiai)
 end if
 else if process_reply(iai) = -1 then
 rt(iai.putr).pf <- rt(iai.putr).pf - 1
 end if
 end if
end

(1) iptr is got by socket properties
(2) to summarize, if we get an IAI with a pu we don't know or with an IP address different from what is stored in RT,
we forward the information to every peer we know. We do that to maintain internally the RT and others criteria are not
information-pertinent for others peers at this level.
When we receive an IAI, we first analyze information about last sender. If we don't know him, we store - after checking
- his information in my RT. Then, we check that this IAI is not looping and that it's the first time we got it. If not, packet
is dropped. Then, we check that information about the peer is correct. If not, we decrement my transmitter
performance evaluation (the reply could be wrong if searched user disconnected himself since result sending or if this
packet have been send by a cracking program trying to affect AMI performances). In the opposite case, we increase
the transmitter performance evaluation by two. We store this result in my RT and we send it to every peer we know and
which is pingable. Note that we forward the IAI to others people only in the case it is a new peer or a peer whose IP
address has changed.

Address request (AR) specifications

This kind of packet is used to request a list of peers matching some specified criteria by sending a broadcast over AMI
network. The corresponding reply would be an IAI. Often, this request will be used internally by AMI to find the IP
address of a peer we can't contact any more (Address Resolution mode). In this case, the criteria will be the public
key of the peer using the IP address we are looking for. In some others cases, the criteria (one or more) will be
application-specific. It can be 'Every peer running AMI protocol AMIrc and wanting to speak about cinema (criteria

name: <TOPIC>)' for example.
All criteria (including own public key) are stored under XML format in a file named 'user.xml'. This file is described
in this document at User criteria.
Note that AR query runs two different 'philosophies' following the type of search (Address Resolution mode or others
protocols criteria). If we use AR in Address Resolution mode, we ask people if they know someone named something
and whose we're searching the address. Every body can reply and not only the one we are looking for. Indeed,
information is distributed on every AMI node in the RTs. At the opposite, If we use AR with others criteria, we have
no distribution of personal criteria, we ask people if they are following our criteria and only the people matching the
criteria can reply. In both cases, we forward packets to others peers if we don't have any reply to an incoming AR.
Note that AR are initiated by over-protocols and sent to AMI engine using an AMI internal service (see Address
Request).

AR packet format

Variables:

Name Meaning

putr AR transmitter public key. The transmitter is the AR initiator peer.

altr AR transmitter proposed alias

iptr AR transmitter IP address. Format: IP:Port

pufo AR forwarder public key, just forwards the request. If current peer is the transmitter,
pufo=putr

alfo AR forwarder alias

criteria
This criteria is protocol-independent and describes criteria a peer has to match to be
retrieved. Most of the time, protocol used is 'ami' and the criteria is the public key of
the peer whose we want the ip address (Address Resolution mode).

ttl Time To Live: hops number between peers before packet drop. Default value: 3

arid
AR ID, used to trace and drop looping packets. One arid identifies only information
{criteria} but not information {putr,iptr,altr,pufo,alfo}. We can find the same arid for
two AR with different transmitters or forwarders but with the same {criteria}.

Note:
We don't use any checksum for AR like in IAI. Indeed, checksums in IAI allows to trace packets and information we
already received, but we can receive the same AR more than once.
Packet format:
<amipacket ami_version='0.1' reply_port= 'port' sign=' signature' >
 <ar putr=' value'
 altr=' value'
 iptr=' value'
 pufo='v alue'
 alfo='v alue'
 ttl=' value'
 arid=' value' >
 <criteria protocol=' protocol name' >
 <param name=' parameter name' value=' parameter value' and='0 or 1 ' />
 </criteria>
 </ar>
</amipacket>

If AR is used in Address Resolution mode, criteria is :

 <criteria protocol='ami'>
 <param name='pu' value=' searched public key' and='1'/>
 </criteria>

Otherwise, criteria could be:

 <criteria protocol='amirc'>
 <param name='interest' value='cinema' and='1'/>
 <param name='forum' value='art' and='1'/>
 </criteria>
 <criteria protocol=' another protocol'>
 <param name=' my parameter' value=' my value' and='0'/>
 </criteria>

Criteria rules:

� MAY contain zero or one Address Resolution criteria with protocol ami and parameter pu. If an AR packet
contains one ami criteria, it can't contain any other criteria.

� MUST contain one or more mandatory criteria.

� MAY contain zero or more optional criteria.

DTD (validated):

<!ELEMENT amipacket (amiping | (iai|ar)+) >
<!ATTLIST ami_packet
 ami_version CDATA #REQUIRED
 reply_port CDATA #REQUIRED
 sign CDATA #REQUIRED >
<!ELEMENT ar (criteria+) >
<!ATTLIST ar
 putr CDATA #REQUIRED
 altr CDATA #REQUIRED
 iptr CDATA #REQUIRED
 pufo CDATA #REQUIRED
 alfo CDATA #REQUIRED
 ttl CDATA #REQUIRED
 arid CDATA #REQUIRED >
<!ELEMENT criteria (param+) >
<!ATTLIST criteria protocol CDATA #REQUIRED >
<!ELEMENT param EMPTY>
<!ATTLIST param
 name CDATA #REQUIRED
 value CDATA #REQUIRED
 and (1|0) '1' >

Notes:

<param> tag in AR is a bit different from <param> tag in user.xml : it can't contain sub-elements and attribute value is
mandatory. Moreover, <param> tag in AR has another attribute : and which sets if this parameter is mandatory or not
in the search.

Attributes are:

� Name (mandatory) : param_name. It is name of the parameter for this protocol.

� Value (mandatory) : value. Value of the parameter.

� Mandatory flag (boolean, true by default) : and. If and attribute is true, it means the peer replying MUST
match this parameter. At least one parameter in an AR must be mandatory.

AR transmission

variables:
ttl: time to live (int)
ar : intermediate ar
ais.max : maximum number of replies. Specified by over-protocol when transmitting the AR AIS.
begin
 add_search(ar.arid,ais.max)
 ar <- new AR with
 putr= <own PU>
 altr = <own alias>
 iptr = <own IP>
 paufo = <own PU>
 alfo = <own alias>
 criteria = <my criteria>
 ttl = <specified TTL>
 arid = <new ID>
 query_log(arid)
 for each peer in {rt(*) -ar.putr } sorted by peer.pf do
 if check_peer(peer) = true and result_table(ar.arid).retrieved <
result_table(ar.arid).max then
 wait AR_SEND_INTERVAL
 send(ar,rt(peer.pu).ip)
 end if
 end for
end

Notes:

� Search deepness is controlled by TTL. Maximum TTL can be 5 (to be studied). Caution: a big TTL will
generate huge packet exchanges.

� AIS.max is maximum number of results we want for this AR. It is specified by over-protocol in AR AIS (see
Address Request).

We send an AR to find peers matching our criteria. We send the request with our public key, our IP address, our alias,
one or more criteria, an ID and the time to live which specifies search deepness. The request is sent to every peer in
the routing table sorted by perf. We wait some time between two transmission (time defined in
AR_SENDING_INTERVAL); this way we can stop to send AR if we get enough replies (max value specified in AR
AIS).

AR reception

variables:

b : intermediary boolean, can we reply to the AR ?
newiai: intermediate IAI

begin
 if rt(ar.putr) = null then //---transmitter analyze
 add_peer(ar.putr,ar.altr,ar.iptr)

 else if rt(ar.putr) <> null and rt(ar.putr).ip <> ar.iptr then
 alter_peer(ar.putr,ar.iptr)
 end if
 if rt(ar.pufo) = null then //---forwarder analyze
 add_peer(ar.pufo,ar.ipfo,ar.alfo) (1)
 else if rt(ar.pufo) <> null and rt(ar.pufo).ip <> ar.ipfo then
 alter_peer(ar.pufo,ar.ipfo)
 end if
 b <- true
 if is_log(ar.arid) = false and ar.ttl<6 then (2) //body processing
 query_log(ar.arid)
 if ar.criteria_protocol = 'ami' then
 if rt(ar.criteria_pu) <> null and check_peer(ar.criteria_pu) = true then
 newiai <- new IAI with
 putr = <own pu>
 altr = <own alias>
 criteria = <protocol='ami' param='pu' value='ar.criteria_pu'>
 al = rt(ar.criteria_pu).al
 ip = rt(ar.criteria_pu).ip
 arid = ar.arid
 iaics = <new cs>
 send(newiai,{ar.putr,ar.pufo}) (3)
 else
 b <- false
 end if
 else
 if check_criteria(ar.criteria) = true then
 newiai <- new IAI with
 putr = <own pu>
 altr = <own alias>
 criteria = ar matching criteria (mandatory and optionnal ones)
 al = <own al>
 ip = <void>
 arid = ar.arid
 iaics = <new cs>
 send(newiai,{ar.putr,ar.pufo}) (3)
 else
 b <- false
 end if
 end if
 if b = false then
 if ar.ttl -1 > 0 then
 add_search(ar.arid,-1)
 newiai <- new IAI with
 putr= ar.putr
 altr = ar.altr
 iptr = ar.iptr
 pufo = <own pu>
 alfo = <own alias>
 criteria = <ar criteria>
 ttl = ar.ttl - 1
 arid = ar.arid
 for peer in {rt(*) - rt(ar.putr) -rt(ar.pufo)} sorted by pf do
 send(newiai,rt(peer.pu).ip)
 end for
 end if
 end if
 end if
end

(1) ipfo is got by socket properties
(2) Condition ar.ttl<6 allows to drop cracked packet affecting AMI engine performances. Indeed no AR can have a
TTL > 5
(3) See IAI sending : Transmission as reply to an address request (type 2)

When we received an AR there are two cases:

� we know the reply and if so, we send reply to request transmitter and to last request massager.

� we don't. The time to live of address request is decremented. if TTL is more than zero, we ask to every peer we
know (except people asking) sorted by performance.

User criteria

Each peer stores its protocols information in its xml file user.xml and relative files. When someone send an Address
Request broadcast, the AMI engine read this file to establish if we match the criteria or not. This file is used by all
AMI protocols - already existing or not - and also by the Address Resolution function of AMI whose criteria is public
key. Note that tags describing the AMI protocol itself are mandatory.

Description files

When AMI runs, it can manage several external protocols. When a user installs a new AMI protocol, specific entries
are stored into a special description file with '.ami' extension (for io access performances and security reasons) and
user.xml imports these files as entities. The AMI protocol is self-described in a file called core.ami. For example, if
you want to add a new protocol, let's say 'amirc' to your configuration, the system will import and write data in a file
called amirc.ami. The AMI engine will add an entry for amirc protocol in file user.xml.

AMI service protocolmanager (see protocolmanager) must be invoked to add or remove such entries in AMI system.

user.xml format

Note: In this example, protocol amirc is given as an example but protocol ami is mandatory.

Mandatory AMI parameters:

Name Meaning

pu own public key. Couple pu/pr is generated with an AMI external function (see ami
engine arguments).

pr own private key.

al own alias which will be given to others peers.

All AMI parameters alterable
by service amiparameter

See list and meanings at: amiparameter

Format:

File user.xml:

<?xml version='1.0' encoding='UTF-8' standalone='yes' ?>
<user ami_version='0.1' xmlns='http://www.ami.org/user'>
<!entity ami SYSTEM 'core.ami' >

<!entity amirc SYSTEM 'amirc.ami' >
<protocol name='ami' secure='true' available='true'>
&ami;
</protocol>
<protocol name='amirc' secure='false' available='true'>
&amirc;
</protocol>
</user>

File core.ami (sample parameters):

<configuration>
 <descriptions>
 <protocol_description>
 <note lang='en' value='AMI core protocol'/>
 </protocol_description>
 <param_description param='PU' type='string'>
 <note lang='en' value='Peer public key' />
 </param_description>
 </descriptions>
 <parameters>
 <param name='SYSTEM' value='core.ami' />
 <param name='PU' value='my public key' />
 <param name='AL' value='my default alias' />
 <param name='PR' value='my private key' />
 <param name='TTL' value='3' />
 </parameters>
</configuration>

File amirc.ami (example of protocol description):

DTD (validated):

<configuration>
 <descriptions>
 <protocol_description>
 <note lang='en' value='AMI-based IRC protocol'/>
 </protocol_description>
 <param_description param='SYSTEM' type='string' minlength='1' maxlength='512'
default='amirc.ami'>
 <note lang='en' value='Name of .ami file'/>
 </param_description>
 <param_description param='irc_group_id' type='int' min='0' max='10000'>
 <note lang='en' value='irc group id'/>
 </param_description>
 <param_description param='interest' type='string'>
 <note lang='en' value='subject interest'/>
 </param_description>
 </descriptions>
 <parameters>
 <param name='SYSTEM' value='amirc.ami' />
 <set name='irc_group_id'>
 <entry value='1234'/>
 <entry value='86'/>
 </set>
 <set name='interest'>
 <entry value='cinema'/>
 <entry value='sport'/>

 </set>
 </parameters>
</configuration>

<!ELEMENT user (protocol+) >
<!ATTLIST user
 ami_version CDATA #REQUIRED
 xmlns CDATA #REQUIRED>
<!ELEMENT protocol (configuration) >
<!ATTLIST protocol
 name CDATA #REQUIRED
 secure (true|false) #REQUIRED
 available (true|false) #REQUIRED >
<!ELEMENT configuration (descriptions?,parameters)>
<!ELEMENT descriptions (protocol_description,param_description*)>
<!ELEMENT parameters (param+,set*)>
<!ELEMENT set (entry+)>
<!ATTLIST set name CDATA #REQUIRED>
<!ELEMENT entry EMPTY>
<!ATTLIST entry value CDATA #REQUIRED>
<!ELEMENT protocol_description (note*) >
<!ELEMENT param_description (note*) >
<!ELEMENT note EMPTY >
<!ATTLIST param_description
 param CDATA #REQUIRED
 type (int|string|boolean|float) #REQUIRED
 min CDATA #IMPLIED
 max CDATA #IMPLIED
 minlength CDATA #IMPLIED
 maxlength CDATA #IMPLIED
 default CDATA #IMPLIED>
<!ATTLIST note
 lang CDATA #REQUIRED
 value CDATA #REQUIRED>
<!ELEMENT param EMPTY >
<!ATTLIST param
 name CDATA #REQUIRED
 value CDATA #REQUIRED >

Comments:

� Protocol named 'ami' is mandatory. The number of parameters is not fixed but we must find some mandatory
parameters (see table before). Note that the description file core.ami will be encoded with a symmetrical key
that the user must enter at the AMI engine start.

� Each protocol must contain a mandatory name and we can specify if we want this protocol to be secured or
not (by default, is not). If secure='true', every string after the tag <protocol> and before the tag </protocol> (
basically, all the description file) will be encoded with the k symmetrical key (blowfish algorithm), to avoid
that someone could read protocols parameters just editing the file.

� Attribute available informs AMI engine about status of a protocol : in use or not. The user can use one
protocol and disable others if he doesn't use them.

� <param> elements must contain a mandatory name and a mandatory value. They can have only one value for
the same parameter name. <set> elements are special parameters whish are designed to map several values
and can be used to store multiple items like in amirc exemple bellow. Each protocol has a mandatory SYSTEM
parameter whish gives the description file. This is required because during XML parsing, every ami file (after
being decoded if needed) is included inside the main user.xml file and we then lost any file reference wish
will be useful when committing some changes in the ami file.

� <param> tag also exist in AR packets and is different in this scope. It is the reason why user.xml namespace is
different from others AMI formats: xmlns='http://www.ami.org/user'.

check_criteria function

If we receive an address request with some application-specific criteria (People wanting to speak about cinema for
instance), the AMI engine has to check in our criteria list in our user.xml file if we match this request. We use then
boolean check_criteria(criteria) function. Note that we can use check_criteria function only to process non Address
Resolution criteria (not based on protocol 'ami'). The AR contains the criteria under this form (see chapter Address
request (AR) specifications) :
<criteria protocol=' protocol name'>
 <param name=' parameter name' value=' parameter value' and='1 or 0' />
</criteria>

Example:

<criteria protocol='amirc'>
 <param name='interests' value='cooking' and='1' />
 <param name='interests' value='cake cooking' and='0' />
</criteria>
<criteria protocol='amiskill'>
 <param name='skill' value='cooker' and='1' />
 <param name='location' value='london' and='1' />
</criteria>

This request means ' I want to speak with people about cooking and optionally about cake cooking (amirc protocol)
and who have cooker skills (eventually to give some lessons) and living in London (amiskill protocol)'. Note that in
this case, we are doing a criteria joint over two protocols.

Variables:
criteria : searched criteria as included in the AR
protocol_list : array containing protocols we know and being available (ready to be used)
begin
 for each criteria do
 if criteria_protocol in {protocol_list} then
 for each param in {AR <param> tags} do
 if param_and = 1 then
 for each parameter value in user.xml for this protocol and this parameter
do
 if param_value doesn't match a corresponding entry in user.xml then
 return false
 end if
 end for
 end if
 end for
 end if
 end for
 return true
end

Goal is to set if we match an AR criteria. For each <criteria> tag in the AR, we first check if this criteria is associated
with an existing and in use protocol. If so, we analyze every <param> tag in this criteria. Each <param> tag contains
a name and a value. If the parameter is mandatory and that there is no entry in user.xml with a matching param:value,
no need to continue, we just return false. We don't check validity of non-mandatory parameters because every AR must
contain at least one mandatory parameter and condition 'all mandatory parameters are matching' is enough to return

true.

Protocol description

AMI must be able to deal with any further protocol and requires these protocol to be compliant and follow some rules.
An AMI protocol is almost AMI-independent but must at least provide a description file (.ami file) wish gives
parameters used by AMI engine to check if the current node matches an AR criteria. As we described it before, a
parameter is composed of a name and a value (we can find n parameters with the same name but different values).

Parameter description

This is an advanced functionality of protocol description file. The goal is to describe each parameter and set type to
limit typing errors when entering parameters. The description tags are located inside the .ami file.

Format:

<descriptions>
 <description param ='value ' type=' value ' min=' value ' max=' value '
minlength=' value' maxlength=' value ' default=' value '>
 <note lang=' value ' value=' value ' />
 </description>
</descriptions>

Description of fields:

Name Goal

description A non-mandatory description of a parameter.

param Name of the parameter described

type Parameter type: int (integer), string , boolean or float

min Minimum value if it is a number (int or float)

max Maximum value if it is a number (int or float)

minlength Minimum size in characters if it is a string

maxlength Maximum size in characters if it is a string

default Default value of this parameter

note A Note used to be displayed in a configuration tool, can contain several values , one for each
language.

lang Language local of the description (ex : en for English, fr for French, sp for Spanish ...)

value The note itself in the given language.

AMI Internal Services protocol (AIS)

Definition

AMI over-protocols communicate with AMI engine via a specific protocol : AIS (Internal AMI Services) based on
XML. Communication is done with filestreams. This way, any program able to write or read a XML file and parse it,
written in any language can become an AMI protocol. If an AMI protocol needs to send an AMI request (an AR for
instance), it has to write in the local file in.xml which will be processed by AMI engine and result has to be parsed
from file <query_id>.xml. AIS queries are processed in priority and before standard network AMI queries. AIS queries
are encapsulated into an AIS packet (see format bellow).
Variables:

Na
me

Goal Mandat
ory

nam
e

Type of request : ar for example yes

id Packet id yes

arg Argument for query, most of the time is the target of the query no

valu
e

Needed by some arguments : value to be processed no

acc
ess

Access type (see table below) yes

max Maximum number of replies for a query, if not specified, max=-1 (infinite) no

che
ck

Required by many AIS to process low-level queries or change AMI engine parameters. For AIS
queries , check is a trivial hashcode(see hashcode below) encoded with AMI symmetrical key (ami
passphrase). For AIS replies, check is the AIS ID encoded with AMI symmetrical key.

no

Format:

<?xml version='1.0' encoding='UTF-8' standalone='no' ?>
<!DOCTYPE ais_packet SYSTEM 'ais_query.dtd' >
<ais_packet xmlns=' http://www.ami.org/ais ' >
 <ais name=' query name' id= 'packet id' arg=' query parameter'
value= 'a value' access=' access type ' max='max reply number'
check ='check value' >
 </ais>
</ais_packet>
An AIS can contain only one sub-query like AR or EAI.

Hashcode:
The string used to make the hash is the complete AIS string with check value = '' (and not the actual value which is
beeing computed).

DTD (validated):
<!-- DTD used for Ami Internal Services queries, do not edit -->
<!ELEMENT ais_packet (ais+)>
<!ATTLIST ais_packet xmlns CDATA #REQUIRED >
<!ELEMENT ais (ar | eai)? >

<!ATTLIST ais
 name CDATA #REQUIRED
 id CDATA #REQUIRED
 arg CDATA #IMPLIED
 value CDATA #IMPLIED
 access CDATA #REQUIRED
 max CDATA #IMPLIED
 check CDATA #IMPLIED >
<!-- AR part -->
<!ELEMENT ar (criteria+) >
<!ELEMENT criteria (param+) >
<!ATTLIST criteria protocol CDATA #REQUIRED >
<!ELEMENT param EMPTY >
<!ATTLIST param
 name CDATA #REQUIRED
 value CDATA #REQUIRED
 and CDATA #REQUIRED >
<!-- EAI part -->
<!ELEMENT eai EMPTY>
<!ATTLIST eai
 pu CDATA #IMPLIED
 al CDATA #REQUIRED
 ip CDATA #REQUIRED
 cm CDATA #IMPLIED >
The DTD is stored in file ais_query.dtd

Reply

Replies from AMI engine are stored in a file named <id>.xml (1234.xml for example). Every query has its own out
file. Reply is wrote under this format:

Format:

<ais id= 'id number' check=' value ' >
 <reply> reply depending on AIS type </reply>
</ais>

DTD (validated) :

<!-- DTD used Ami Internal Services replies, do not edit -->
<!ELEMENT ais (reply) >
<!ATTLIST ais
 id CDATA #REQUIRED
 check CDATA #REQUIRED >
<!ELEMENT reply (peer*) >
<!ATTLIST ais code CDATA #IMPLIED>
<!ELEMENT peer EMPTY >
<!ATTLIST peer
 pu CDATA #IMPLIED
 al CDATA #IMPLIED
 ip CDATA #IMPLIED >

The DTD is stored in file ais_reply.dtd

Note that check parameter is always needed in replies from AMI engine to authenticate transaction replies.

Access types

Name Goal

get Query goal is to get something from AMI engine. For example, to get an IP address from a PU.

set Query goal is to set something in AMI engine. For example to change an AMI engine parameter.

add Add a query in AMI spool. For example, adding an Address Request.

remove Remove a query from AMI spool. Cancel this query if process is not yet started.

Available AIS

Available services summary:

Access Name arg value check
required ?

get isolated - - no

infopeer pu | al | ip value of pu or al or ip no

amiparameter parameter to get as
<protocol>.<param>

- no

protocolstatus protocol name - no

amiset Set name as <protocol>.<set> - no

set amiparameter parameter to set as
<protocol>.<param>

value of parameter yes

protocolstatus protocol name true or false no

add ar - - yes

eai - - yes

protocolmanager protocol name description file path yes

cleanrt older number of days yes

level [1,3] yes

number [1,-1 (infinite)] yes

amiset destination set as
<protocol>.<set>

value to add in the set yes

remove ar - - yes

protocolmanager protocol name - yes

amiset destination set as
<protocol>.<set>

value to remove from the
set

yes

Address Request

Often, some protocols need to operate some address request to find peer lists. In this case, protocol has to provide an
AIS to AMI engine.

Rules:

Check required, access type: add,remove

Add Query Format:

<ais name='ar' id=' value ' access='add' max=' value like 10 ' check=' value ' >
 <ar>
 <criteria protocol=' protocol name '>
 <param name=' parameter name ' value=' parameter value ' and='0 or 1'/>
 </criteria>
 </ar>
</ais>

(Can contain several criteria and several parameters in each criteria).

Note:

The random AIS id value will be also be used as AR ID in the AR packet.

Then, AMI engine will process request and will fill the out file with an XML packet like:

Add Reply Format :

<ais id=' value ' check=' value ' >
 <reply>
 <peer pu=' value'
 al=' value'
 ip=' value' />
 <peer pu=' value'
 al=' value'
 ip=' value' />
 ...
 </reply>
</ais>

AR reply has to contain (pu,al,ip) information about found peers.

or if an error occurs:

<ais id=' value ' check=' value ' >
 <reply code=' code' />
</ais>

Remove Query Format:

<ais name='ar' id=' value ' access='remove' check=' value ' />

Then, AMI engine will process request and will fill out file with an XML packet like:

Remove Reply Format :

<ais id=' value ' check=' value '>
 <reply code=' code' />
</ais>

(code=0 if operation successful)

Code meaning:

Code Meaning

0 OK, AR canceled

1 Problem : check failed

2 Problem : wrong packet format

3 Problem : internal error

External Address information

An EAI allows a user to enter RT information 'manually'. This information comes from an external information source.
It is useful in the following cases:

� At the very first session: the External Address Information is the first data filled up in the routing table.
� Isolated peer : if no peer is ami-pingable. The AMI protocol needs at least one alive connection.

EAI are sent via an AMI internal service. This way, we avoid mixing EAI with incoming distant AMI queries and we
greatly accelerate processing of the EAI in RT. When the AMI engine receive an EAI via AIS, it pushes it directly in a
first priority buffer.

'pu' attribute is not mandatory. If it is not given, an amiping is done at given 'ip' address to get it. It requires however
for the new peer to be pingable (connected). If pu is given, no real amiping is performed.

Rules:

Check required, access type: add

Variables:

Name Meaning

pu (optional) New user public key

al New user alias

ip New user IP address at creation. Format: IP:Port

cm (optional) Comments about new user (String(256))

Query Format:

<ais name='eai' id=' value' access='add' check=' value' >
 <eai pu='value' al='value' ip='value' cm='value' />
</ais>

Then, AMI engine will process request and will fill the out file with an XML packet like:

Reply Format :

<ais id=' value ' check=' value '>
 <reply code=' code' / >
</ais>

Code meaning:

Code Meaning

0 OK, EAI correctly altered or added

1 Problem : check failed

2 Problem : wrong packet format

3 Problem : internal error

isolated

Rules:

Check not required, access type: get

This AIS is used by external protocol to know if we are in a total isolation case (none RT entry is amipingable). In
this case, the protocol could ask for a mandatory EAI for example.

Query Format:

<ais name='isolated' id=' value ' access='get' />

Then, AMI engine will process request and will fill out file with an XML packet like:

Reply Format :

<ais id=' value ' check=' value '>
 <reply code=' true | false | code' / >
</ais>

Code meaning:

Code Meaning

2 Problem : wrong packet format

3 Problem : internal error

amiparameter

It is a set of accessors to AMI core parameters like TTL, timeouts...(see list below). This AIS is also deigned as
accessor to any AMI protocol.

Rules:

Check required only for set, access type: set, get

'get' query format:

<ais name='amiparameter' id=' value ' arg=' protocol . parameter ' access='get'/>

with 'protocol', the name of the targeted protocol and 'parameter', the targeted parameter for this protocol.

'get' reply format:

<ais id=' value ' check=' value ' >
 <reply code=' value | code' />
</ais>

If there is a get error, reply contains an error code (see code meaning below).

'set' query format:

<ais name='protocol' id=' value ' check=' value ' arg=' protocol . parameter '
value=' value' access='set' />

with 'protocol', the name of the targeted protocol and 'parameter', the targeted parameter for this protocol.

'set' reply format:

<ais id=' value ' check=' value ' >
 <reply code=' code' />
</ais>

Code meaning:

Code Meaning

0 OK : amiparameter correctly altered

1 Problem : check failed

2 Problem : wrong packet format

3 Problem : internal error

4 Problem : value out of range

5 Problem : unknown parameter

List of AMI core parameters :

Name Description Default
value

Allowed values

LOCAL Language in use by AMI {en] String [2,5]

TTL Time To Live, used in AR. [3] [0,5]

MAX_RT_SIZE Maximum number of entries in the RT before a
clean level 1 (see clean function)

1E+9 (
infinite)

[50, 1E+9]

Name Description Default
value

Allowed values

NB_SENDER Number of threads sending AI packets. [10] [1,10000]

NB_READER Number of threads processing incoming AI packets.[10] [1,10000]

MAX_OUTSPOOL_SIZE Maximum size of buffer of packets to be send before
blocking the adding of new queries.

[100] [10, 10000]

MAX_INPUTSPOOL_SIZ
E

Maximum size of buffer of incoming packets before
blocking reading of new incoming packets.

[100] [10, 10000]

MAX_SEND_TRIES Maximum number of tries to transmit an AMI
packet to a peer before dropping the packet..

[3] [1,5]

MAX_CHECK_INTERVA
L

Trust time of an entry in the RT in seconds (see dlc
column in RT)

[60] [1,1E+9(infinite
)]

MAX_SEND_TIME Max sending time for a packet in ms [10000] [100,1E+9(
infinite)]

CHECK_INTERVAL General use interval in ms, can be modified
following machine performances

[1000] [10,1E+9]

AMI_PORT Port used by the AMI listener (AMIReader) [1139] [0,65535]

AMIPING_TIMEOUT Maximum time to get answer from a peer (ms) [10000] [100,1E+9]

AR_SEND_INTERVAL Interval between two AR transmission (ms) [1000] [0,1E+9]

BLACK_LIST_LIMIT Performance point from a peer become
automatically black-listed

[-100] [-1E+9 (infinite),
-2],

VERBOSITY Verbosity level of AMI.
0: full verbosity
1: medium verbosity
2: important messages only
3: none

[2] [0,3]

MAX_PACKET_SIZE Maximum number of queries inside a packet to be
sent or received.

[20] [1,20]

AL Own alias ['default
alias']

[String (16)]

Note that this list will probably grow or be modified with AMI versions.

amiset

Amiset AIS is used by protocols to manage a set of data. For instance, it can be used to maintain an address book. AMI
supports two type of data storage about a protocol : parameters which are unique and are used to configure the protocol
and set which are used to store business data. Note that AMI core protocol doesn't use this AIS because it doesn't have
any set.

Rules:

Check required for add and remove,

access type: add, remove, get

'add' query format:

<ais name='amiset' id=' value ' check=' value ' arg=' protocol . amiset ' value ='value
to add' access='add'/>

with 'protocol', the name of the targeted protocol and 'amiset', the targeted set for this protocol.

'add' reply format:

<ais id=' value ' check=' value ' >
 <reply code=' code' />
</ais>

If there is a get error, reply contains an error code (see code meaning below).

'remove' query format:

<ais name='amiset' id=' value ' check=' value ' arg=' protocol . amiset ' value ='value
to remove' access='remove'/>

with 'protocol', the name of the targeted protocol and 'amiset', the targeted set for this protocol.

'remove' reply format:

<ais id=' value ' check=' value ' >
 <reply code=' code' />
</ais>

'get' query format:

<ais name='amiset' id=' value ' check=' value ' arg=' protocol . amiset '
access='get'/>

with 'protocol', the name of the targeted protocol and 'amiset', the targeted set for this protocol.

'get' reply format:

if operation completed:

<ais id=' value ' check=' value ' >
 <reply>
 <entry value ='value1 '/>
 <entry value ='value2 '/>
 <entry value ='value3 '/>
 ...
 </reply>
</ais>

if operation fails:

<ais id=' value ' check=' value ' >
 <reply code=' code' / >
</ais>

If there is a get error, reply contains an error code (see code meaning below).

Code meaning:

Code Meaning

0 OK : amiset correctly altered

1 Problem : check failed

2 Problem : wrong packet format

3 Problem : internal error

4 Problem : value out of range

5 Problem : unknown set

infopeer

This request is used to get information about an entry in RT. You have to give either pu or ip or al and AMI engine
returns corresponding peer(s) matching your query.

Rules:

Check required, access type: get

Query format:

<ais name='infopeer' id=' value ' check=' value ' arg='pu | ip | al' value=' value'
access='get' />

Reply format:

If arg='pu', reply will contain <al> and <ip>
If arg='ip', reply will contain <pu> and <al>
If arg='al', reply will contain <pu> and <ip>

<ais id=' value ' check=' value ' >
 <reply>
 <peer pu=' value'
 al=' value'
 ip=' value' />
 <peer pu=' value'
 al=' value'
 ip=' value' />
 ...
 </reply>
</ais>

or if an error occurs:

<ais id=' value ' check=' value ' >
 <reply code=' code' />
</ais>

Code meaning:

Code Meaning

1 Problem : check failed

2 Problem : wrong packet format

3 Problem : internal error

4 Problem : unknown argument

5 Problem : No result

If arg='pu', there is always one unique reply.

If arg='ip' or 'al', it may have several replies.

cleanrt

It is used to clean old and useless entries in RT.

Rules:

Check required, access type: add

Query format:

<ais name='cleanrt' id=' value ' check=' value ' arg='older' value=' value in
seconds' access='add' />

or

<ais name='cleanrt' id=' value ' check=' value ' arg='level' value=' level value'
access='add' />

or

<ais name='cleanrt' id=' value ' check=' value ' arg='number' value=' minimum number
of peers to be dropped' access='add' />

Reply format:

if success,

<ais id=' value ' check=' value ' >
 <reply code=' number of peers dropped' />
</ais>

if any error occurs,

<ais id=' value ' check=' value ' >
 <reply code=' code' />
</ais>

Argument description:

� older argument is used to specify dlc date in seconds from peers are dropped. For example, if older=60, every
peers which date last check is greater than 1 min will be dropped. Caution : if older value is lower than
MAX_CHECK_INTERVAL (see amiparameter), you can drop trusted peers.

� level argument provides generic cleanup scenarios with three levels : level 1: every peer which dlc is greater
than 10 days are dropped ; level 2: Every peer which dlc is greater than MAX_CHECK_INTERVAL and
which pf is lower than 10 are dropped ; level 3 : Every peer which dlc is greater than
MAX_CHECK_INTERVAL are dropped.

� number argument provides possibility specify a fixed number of peers to be dropped. number peers are
dropped, even if they are trusted (in this case, they are dropped from lowest pf to highest pf).

Code meaning:

Code Meaning

0 OK, RT cleaned (The number of erased peers is written after the '0' and a slash)

1 Problem : check failed

2 Problem : wrong packet format

3 Problem : internal error

4 Problem : out of range

protocolstatus

It is used to get or set status of a given protocol (available or not). If a protocol is not available, we will not match a
broadcast dealing with this protocol. All protocols status are in user.xml file (and relative files), see user.xml format .

Rules:

Check not required, access type: get, set

get query format:

<ais name='protocolstatus' id=' value ' arg=' protocol ' access='get' />

get reply format:

<ais id=' value ' check=' value ' >
 <reply code=' true | false | code' />
</ais>

If an error occurs (because of a wrong protocol name for example), a code is returned (see code table below).

set query format:

<ais name='protocolstatus' id=' value ' arg=' protocol ' value='true|false'
access='set' />

set reply format:

<ais id=' value ' check=' value ' >
 <reply code=' code' />
</ais>

Code meaning:

Code Meaning

0 OK : protocol status correctly altered

2 Problem : wrong packet format

3 Problem : internal error

4 Problem : protocol does not exit

protocolmanager

This is a core service used to add or remove entries in user.xml file in order to plug or unplug AMI protocols to the
system.

Rules:

Check required, access type: add,remove

Query Format for adding:

<ais name='protocolmanager' id=' value ' arg=' protocol name / (true | false) '
value=' description file location' access='add' check=' value ' />

� arg contains the protocol name followed by a slash and a boolean representing security policy of the protocol (
encoded or not).

Query Format for removing:

<ais name='protocolmanager' id=' value ' arg=' protocol name ' access='remove'
check=' value ' />

Then, AMI engine will process request and will fill the out file with an XML packet like:

Reply Format :

<ais id=' value ' check=' value '>
 <reply code=' code' />
</ais>

Code meaning:

Code Meaning

0 OK, protocol correctly added or removed

1 Problem : check failed

2 Problem : wrong packet format

3 Problem : internal error

4 Problem : Description file not found

5 Problem : Incorrect description file.

amistop

This is a core service used to stop properly the ami engine.

Rules:

Check not required, access type: add

Query Format:

<ais name='amistop' id=' value ' access='add' />

Then, AMI engine will process request and will fill the out file with an XML packet like:

Reply Format :

<ais id=' value ' check=' value '>
 <reply code=' code' />
</ais>

Code meaning:

Code Meaning

0 OK, ami engine is about to stop

2 Problem : wrong packet format

3 Problem : internal error

AIS engine

Here is described how AMI engine processes AMI internal services queries. A specific thread read recursively file
in.xml to detect AIS adding event. Note that timeouts are managed by over-protocols. When maximum time for the
AIS is reached, the over-protocol should send a remove access type AIS to AMI for cleanup. In this algorithm, we just
describe AR processing ; others AIS queries are trivial and described previously.

When receiving an AR AIS:

begin
 add_search(ais.id,ais.max)
 send the AR
end

We create a new entry in result_table for this AR, identified by its ID.

When receiving a reply for this AR (a new result in result_table has been detected):

begin
 if first reply for this id then
 write in out file:
 <ais id=' value ' check=' value ' >
 <reply>
 <peer pu=' pu1'
 al=' al1'
 ip=' ip1' />
 </reply>
 </ais>

 else
 add a new reply in out file:
 <ais id=' value ' check=' value '>
 <reply>
 <peer pu=' pu1'
 al=' al1'
 ip=' ip1' />
 <peer pu=' pu2'
 al=' al2'
 ip=' ip2' />
 </reply>
 </ais>
 end if
 if result_table(iai.arid).retrieved = result_table(iai.arid).max then
 del_search(ais.arid)
 end if
end

If we get some result for a waited AR and we haven't reach maximum number of results, we alter the out file. Note that
we alter file at each result because this way, over-protocol get immediate results.

Packets compatibility matrix

Available mixes

This array gives you request mixes we can use inside an ami packet.
For instance, you can process a packet like:
<amipacket ami_version='0.1' reply_port= 'port' sign=' signature '>
 <ar>
 ...
 </ar>
 <iai>
 ...
 </iai>

</amipacket>

IAI AR AMIPING

IAI yes yes no

AR yes yes no

AMIPING no no no

Global DTD

This DTD is a summary of all packet-types DTD (AMIping, IAI and AR) and is used for incoming packet validation.

<!--packet part-->
<!ELEMENT amipacket (amiping | (iai|ar)+) >
<!ATTLIST ami_packet
 ami_version CDATA #REQUIRED
 reply_port CDATA #REQUIRED
 sign CDATA #IMPLIED >
<!--criteria part-->
<!ELEMENT criteria (param+) >
<!ATTLIST criteria protocol CDATA #REQUIRED >
<!ELEMENT param EMPTY>
<!ATTLIST param
 name CDATA #REQUIRED
 value CDATA #REQUIRED
 and (true|false) 'true' >
<!--amiping part-->
<!ELEMENT amiping EMPTY >
<!ATTLIST amiping pu CDATA #IMPLIED >
<!--iai part-->
<!ELEMENT iai (criteria+) >
<!ATTLIST iai
 putr CDATA #REQUIRED
 altr CDATA #REQUIRED
 al CDATA #REQUIRED
 ip CDATA #REQUIRED
 arid CDATA #REQUIRED
 iaics CDATA #REQUIRED >
<!--ar part-->
<!ELEMENT ar (criteria+) >
<!ATTLIST ar
 putr CDATA #REQUIRED
 altr CDATA #REQUIRED
 iptr CDATA #REQUIRED
 pufo CDATA #REQUIRED
 alfo CDATA #REQUIRED
 ttl CDATA #REQUIRED
 arid CDATA #REQUIRED >

SOAP encapsulating

In order to foresee future exchange w3c standards, all packets will be SOAP compliant even if we don't use for the
moment real functionality of this norm. SOAP is 'a lightweight protocol for exchange of information in a

decentralized, distributed environment. It is an XML based protocol that consists of four parts: an envelope that defines
a framework for describing what is in a message and how to process it, a transport binding framework for exchanging
messages using an underlying protocol, a set of encoding rules for expressing instances of application-defined data
types and a convention for representing remote procedure calls and responses'. Find SOAP documentation on :
http://www.w3.org . As SOAP protocol writing is in process, this part is subject to changes.

To assure SOAP compliance, AMI packets will not be sent directly over TCP protocol but encapsulate in a SOAP
envelope (itself encapsulated in a HTTP packet, see next part).

<env:Envelope xmlns:env=' http://www.w3.org/2001/09/soap-envelope '>
<env:Body>
<amipacket ami_version='0.1' reply_port= 'port' sign=' signature '>
 <iai>
 ...
 </iai>
</amipacket>
</env:Body>
</env:Envelope>

HTTP encapsulating

HTTP tunneling

In order to go over a lot of network difficulties (firewall.), we encapsulate the SOAP envelops into HTTP packets
(HTTP tunneling). This way, AMI packets will be read as normal HTTP packets. Note than we don't really use HTTP
features, goal is not to contact real HTTP servers but only to go through firewalls and proxies. AMI packets are
encapsulated in a HTTP request (a POST) with following header:
POST /ami HTTP/1.1
Host: hostname
Content-Type: text/xml; charset='utf-8'
Content-Length: body size
SOAPAction: 'http://www.ami.org'

Total AMI packet sample

------------packet start-----------------

POST /ami HTTP/1.1
Host: 177.34.5.4
Content-Type: text/xml; charset='utf-8'
Content-Length: 298
SOAPAction: 'http://www.ami.org'

<env:Envelope xmlns:env=' http://www.w3.org/2001/09/soap-envelope '>
<env:Body>
<amipacket ami_version='0.1' reply_port= 'port' sign=' signature '>
 <iai putr='e2fg5tgEr'
 altr='toto'
 al='titi'
 ip='102.4.8.4'
 arid='0'
 iaics='459482124' >
 <criteria protocol='ami'>
 <param name='pu' value='f45hY7ddh6t'/>
 </criteria>
 </iai>
</amipacket>

</env:Body>
</env:Envelope>

------------packet end-----------------

Note we have a blank line after POST header to separate header from body.

Packets alias

To limit packet size, we must use shorter tags than given previously. We keep long-format tags notations for
understanding but note the following mapping between regular tags and real-packet tags:

Regular tag Used tag

amipacket ap

ami_version av

reply_port rp

sign s

amiping pg

pu pu

iai ai

putr pt

altr at

criteria c

protocol pl

param pm

name n

value v

and a

al al

ip ip

arid rd

iaics ic

ar ar

iptr it

pufo pf

alfo af

ttl tl

ami ami

Note that in the same time, we could remove Soap part from packets to save space as it doesn't yet really useful.

AMIPATH obtaining

AMI needs to find its working directory in order to start properly. AMI engine will try to get this information with 4
distinct methods (sorted) :

Method Ressource

Command line '-d amipath ' when starting AMI engine.

Environment
variable

$AMIPATH

Property file $HOME/amirc.properties

Current directory '.' directory

Ami engine external functions

Available options

We can specify some argument in command line. AMI provides following external functions:

Nam
e

Meaning

-d
direc
tory

Specifies than AMI directory (place where you find files ami.jar, user.xml, rt.xml and all AMI relative files)
is directory . If not given, AMI engine check the environment variable AMIPATH and if this variable is void,
it looks for an amirc.properties file in $HOME and there is not, it uses current directory.

-inst
all

Forces AMI installation. (if the system already exists, it is overwritten and reinstalled)

Can be called with -d option. This option must be called only one time for each value of AMIPATH, it will
create AMI environment and set password and PKI keys. If not called, AMI will cannot start. When called,
AMI will:

1- Create needed files : user.xml and rt.xml with default or empty values.

2- Ask for an AMI passphrase (symmetrical key).

3- Generate a couple of keys (public key / private key) and put them in user.xml. Will NOT override any
existing user.xml file. Caution: public key identifies the peer. If peer changes its pu, it will be taken as a new
peer and will no more be reachable by others peers. Backup user.xml file to keep a trace of this key.
Moreover, pr (private key) must stay secret to avoid some cracking. Pr is in user.xml file encoded with the
ami passphrase (k). So you need to:

- Backup user.xml file

- Remind AMI passphrase or symmetrical key (k)

- Keep user.xml out of access.

-chg
pass

Called to change the ami passphrase. This passphrase must be at least 8 characters long and should be
constituted of several words. It is case sensitive and accept any punctuation character. Example: ' my tailor is
rich' or 'Rggt6fg64jU tyh8 1Gre'. But remind that you will need to enter it at each ami start and that it can be
required by some AMI over-protocols.

-imp
ortrt
=file
nam
e.xm
l

Used to import data of a RT (rt.xml file) - that somebody sent to you - in local rt.xml. Local RT is updated
with this RT. Caution: AMI assumes that data included in filename.xml is firstly on local data : local RT
entries are not dropped but entries with same pu than in filename.xml will be overwritten. The ami passphrase
will be required in order to process the import.

-vers
ion

Displays AMI engine version

-nog
ui

Uses AMI without graphical display (useful under Unix for scripting for instance).

-help Displays the AMI help message detailing available options.

Usage:
ami [-d=<directory>] [-nogui][-install | -chgpass | -version | -help | -importrt=<filename>]

To call this functions:
java ami.AMIMain <parameter>
for example:
$ java ami.AMIMain -install -d=/home/toto

To start AMI engine:
java ami.AMIMain [-d directory]
For example if ami path is /opt/ami:
$ cd /opt/ami
$ java ami.AMIMain
or
$ export AMIPATH=/opt/ami
$ java ami.AMIMain
or
$ java ami.AMIMain -d /opt/ami

